Math 149 W02 DD.

Cubic spline curves

1. Overview

Polynomial parametric curves of high degree have a disadvantage: Re-
quirements placed on one stretch of such a curve can have a very strong
effect some distance away. In Figure 1, the jump in the height of the data
points near the middle has a strong effect on the interpolating polynomial
curve near the ends.

Figure 1: Lagrange interpolation of data points

In contrast, Figure 2 shows an example of a “cubic spline” curve through
the same data points. Notice how it follows them much more closely.

Figure 2: Spline interpolation of the same data points

The spline curve was constructed by using a different cubic polynomial
curve between each two data points. In other words, it is a piecewise cubic
curve, made of pieces of different cubic curves glued together. The pieces are
so well matched where they are glued that the gluing is not obvious.

In fact, if the whole curve shown is described with a single function P(t),
then P(t) is so smooth that it has a second derivative everywhere and this
derivative is continuous.
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Definition. A cubic spline curve is a piecewise cubic curve with continuous
second derivative.

The word “spline” actually refers to a thin strip of wood or metal. At
one time curves were designed for ships and planes by mounting actual strips
of wood or metal so that they went through the desired data points but
were otherwise free to move. For reasons of physics, such curves are approxi-
mately piecewise cubic with continuous second derivative, if they are suitably
parameterized.

You may recall from calculus that the curvature of a curve at each point
depends on the second derivative there. At the end points, an actual wood
or metal strip has no reason to bend, and the second derivative of its curve
is zero.

Definition. A cubic spline curve is relazed if its second derivative is zero at
each endpoint.

We shall concentrate on relaxed cubic spline curves. As you will see, they
can be used either for controlled design (B-splines) or for interpolation. To
describe the cubic pieces simply and conveniently, we shall use cubic Bézier
curves.

2. Bézier curves with zero second derivative at one end

In order to handle the relaxed end conditions, we shall need to be able to
tell when a Bézier curve has zero second derivative at one end. Recall that
for a cubic Bézier curve P(t) with control points Py, Pi, Ps, P,

P”(O) :6(P0—2P1+P2)
This quantity is zero when 2P, = Py + P», or equivalently, when

P1:%P0+%P2.

A similar relation holds in case P"(1) = 0. Even more simply:

Observation. P"(0) = 0 if and only if P; is the midpoint of the segment
PyP,; P"(1) = 0 if and only if P, is the midpoint of the segment P; P;. Some
examples are shown in Figure 3.

3. Gluing two Bézier curves
First attempt: Matching endpoints

Let us start with two Bézier curves that can be glued together but oth-
erwise are not well matched. Let the first curve have control points Py, P,
P,, P; and let the second curve have control points QQg, @1, @2, @3, as shown
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P"(0) # 0

P"(0) # 0

P"(0) = 0

Figure 4: A coarse gluing
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in Figure 4. Suppose that P; = (. For convenience let this point of joining
also be called S;i.e., S = P3 = Qy. The result is shown in Figure 4.

The curve has a corner, because at S the first Bézier curve has first
derivative 3(S — P,) and the other has first derivative 3(Q; — S), but the
vectors S — P, and ;1 — S do not even have the same direction. (Recall that

subtracting one point from another, say A — B, gives the vector from B to
A.)

Second attempt: Matching values and first derivatives

A much better join is obtained if we require that S — P, = @1 — S, or
equivalently, that S be the midpoint of the line segment P,Q;, so that the
first derivatives match at the point of gluing. Figure 5 shows an example
where this condition is met.

Figure 5: A better gluing, matching first derivatives

This example certainly looks smoother. However, it is still not ideal.
Imagine taking a fast train ride along a track of this shape. On the first
Bézier segment you are curving so that you are pushed against the left wall
of the train; on the other you are curving the other way and are pushed
against the right wall. At the point of joining you are jerked from one side of
the train to the other. For an even smoother join, then, the curvature should
be continuous. Because the curvature can be expressed in terms of the first
and second derivatives, continuity of curvature can be achieved by matching
second derivatives, as well as first derivatives, at the point of gluing.

Third attempt: Matching values, first derivatives, and second derivatives

Recall that at S, where t = 1 for the first Bézier curve and ¢t = 0 for
the other, the second derivatives of the Bézier curves are respectively 6(P; —
2P, + S) and 6(S — 2Q1 + @2). Thus we want

6(P1 — 2P2 + S) = 6(S — 2@1 + Qg), or equivalently, Pl — 2P2 = QQ — 2@1

DD 4



Here is an interesting way of interpreting this equation. Negate both sides to
get 2P, — P = 2Q)1 — (2. The motivation for doing this is that both sides now
have coefficients summing to 1 and so should represent points, independently
of coordinatization.

The left-hand side corresponds to a particular point A, on the line through
Py and P,. In fact, A, = 2P, — P, = P+ 1- (P, — P;), as shown in Figure
7. Let us call A, the right apex of the first control polygon. Similarly, the
right-hand side of the equation is the left aper A_ = 2QQ1 — Q- of the second
Bézier curve, as shown.

Figure 6: A gluing almost matching second derivatives

As you see, in this example the two apexes are not equal, so the equation
is not satisfied and the second derivatives at S of the two Bézier curves still
do not match. Figure 7 shows an example where they do match, with both
apexes being at a common point A:

Figure 7: A gluing matching second derivatives

The relevant part of Figure 7 looks like the letter A or like an A-frame
cabin.
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Definition. An A — frame is a figure with points as indicated, in which §' is
the midpoint of P,Q1, P, is the midpoint of P; A, and (), is the midpoint of
(Q2A. An example is shown in Figure 8.

Figure 8: An A-frame

Thus we see:

Observation. If two Bézier curves are joined at a point S, both their first
and second derivatives match at S if and only if their control polygons fit an
A-frame.

Note: Matching third derivatives as well sounds promising, but is not helpful,
as it forces both curves to be parts of just one third-degree curve. Thus the
flexibility obtained by gluing curves is lost. See the Exercises.

4. B-spline curves

An easy way of making a controlled-design curve with many control points
is to use B-spline curves. The ones we shall discuss are called relazed uniform
cubic B-spline curves. You start by specifying a control polygon of points
By, By, ... B,, and you end by getting a curve like the one in Figure 9.

Here is the method, if done by hand: Divide each leg of the control
polygon in thirds by marking two “division” points. At each B; except the
first and last, draw the line segment between the two nearest “division”
points, and call the midpoint S;. Then you have made an A-frame with B;
at the apex, as shown. For completeness, let Sy = By and S, = B,,. See if
you can locate the four A-frames in Figure 10.

Finally, sketch a cubic Bézier curve from each point S; to the next, using
as Bézier control points the four points 5;, two “division” points, and S;;1,
as in Figure 11.
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Figure 9: A relaxed uniform cubic B-spline curve
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Figure 10: A-frames for a relaxed cubic B-spline

Bs = S5

Figure 11: Construction of a relaxed cubic B-spline
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As you see, the points of gluing meet the A-frame condition automatically
and at the ends the second derivative is zero. Therefore you obtain a relaxed
cubic spline curve.

The method as performed on a computer is the same; we merely need to
find the Bézier control points in terms of the original B-spline control points:

The “division” points on the line segment from B;_; to B; are %Bi_l—f— %B,-
and %Bi_l + %Bi. Also, S; is the average of the ends of its “cross-segment”,
so that
Si = 5(3Bis1 + 3Bi) + 5(3Bi + 3Biy1) = gBioy + 5B + §Biyy, for i =
1,...,n—1.

To summarize the computer method:

Given B-spline control points By, ..., B,, calculate S; = %Bi,l + %Bi +
%B,-H, fore=1,...,n—1, and let Sy = By, S, = B,. There are n Bézier
curves to plot; curve #4 has control points S;_1, 2B;_1 + 3 B;, 3Bi_1 + 3B;,
and S;. On curve #i, you can plot points on the curve for, say, ¢t =
0,.05,.10,...,.95,1.

Finally, let’s consider the situation mathematically. Let p;(¢) be the ith
Bézier curve (0 <t < 1). These n curves can be combined into a single curve
P(t) for 0 <t < n by letting

(
P(t) =pi(t) for 0 <t <1,
P(t) =po(t — 1) for 1 <t < 2, ete. In general,
P(t)=pi(t—(i—1)) fori—1<t <4, wherei=1,...,n.
Then P(t) is a relaxed cubic spline curve. P(t) is called a uniform spline

curve because its domain 0 < ¢ < n was made from intervals all of length 1.
Non-uniform curves will be considered in Section 10.

An important virtue of B-spline curves is that the influence of individual
control points is local. In fact, any one point on the curve is influenced by
at most four of the B-spline control points. The reason is that for Bézier
curve #i, all four control points can be computed from a knowledge of B;_,,
B;_1, B;, and B;,;. Similarly, control point B; influences only four Bézier-
curve segments: the two that join at S; and the two additional ones joined to
those. The local effect can be illustrated by changing a single control point.
In Figure 12, two choices of the middle control point are indicated, along
with the corresponding B-spline curves. Dots on the curves indicate some
gluing points S;.

What if you don’t want relaxed end conditions? In that case, you can
just use less of the curve, say the part from S; to S,,_1, i.e., 1 <t <n. By
and B,, can still be used as control points to affect the shape of the part of
the curve that you are using.
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or Bg here

Figure 12: The effect of varying one control point

5. Interpolation by relaxed cubic splines

Suppose that you are interested not in controlled design but in interpola-
tion. In other words, data points Sy, ..., S, are given and you want a relaxed
cubic spline curve P(t) for 0 < ¢ < n such that P(i) = S;; i.e., the curve goes
through the data points.

One easy approach is to use B-splines as an intermediate step. This
time, though, you know the points Sy,...,S, and you must compute the
appropriate control points By, ..., B, before you will be able to compute the
Bézier control points for the individual pieces.

Of course, By = Sy and B, = 5,. To find By,...,B,_1, we can use the
linear equations already found above for the S; in terms of the B; and solve
them treating the B; as unknowns and the S; as constants. When the linear
equations are written in matrix form, they look like this (for n = 5):

4100 B, (65, — Sp)
1410 B, | _ 65,
0141 By | ~ 655
0 01 4 B4 (654—55)

Here the B; and S; are points, so that in R? they are pairs of numbers.
These equations are equivalent to two sets of equations with the same coef-
ficient matrix, one set for  coordinates and one for y coordinates. To solve
them, though, it is easiest to use one of two more direct methods. Let M be
the matrix of coefficients (which we can call the “1 4 1 matrix”), let B, be
the matrix whose rows are By, ... B,_1, and let C be the matrix of constants
on the right.

Method 1 (on a computer): Make the augmented matrix [M|C] and row-
reduce it completely. The answer will be [I|B,].
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Method 2 (on homework problems or tests): You will be given M~'; the
solution is then B, = M~'C.

Note: The (n—1) x (n— 1) matrix M is nonsingular for any n. In general, a
matrix is guaranteed to be well behaved if its diagonal entries are all large in
absolute value compared to the sums of the absolute values of the off-diagonal
entries in each row.

Problem. Find Bézier control points for the four segments of the relaxed cubic
spline curve through the data points Sy = (1,—1), S; = (—1,2), So = (1,4),
S3 = (4,3), Sy = (7,5), as shown in Figure 13. Useful information:

-1

4 10 ) 15 -4 1
1 41 =55 —4 16 —4
01 4 1 -4 15
Sa
Sa
S

OSI

So

Figure 13: Data points for interpolation
Solution. n =4, so the “1 4 1”7 equations in matrix form are 3 x 3:

4 10 By (651 — So) -7 13
1 41 By, | = 659 = 6 24 |. Solving these equa-
0 1 4 B3 (653 — S4) 17 13

tions by using the matrix inverse, we get
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Therefore the B-spline control points are By = Sy = (1,—1), B; = (-2, 2),
By = (1,5), B3 = (4,2), By = Sy = (7,5). The four sets of cubic Bézier
control points are as follows, and together they give Bézier curves that go
together to make the curve shown in Figure 14.

Bézier #1: (1,—-1) (0,0) (=1,1) (-1,2)

Bézier #2: (-1,2) (-1,3) (0,4) (1,4)

Bézier #3: (1,4) (2,4) (3,3) (4,3)

Bézier #4: (4,3) (5,3) (6,4) (7,5)

B Sy = By
s
Ve AN
7/ N
Ve AN
7/ AN
7 N
Sy
S3
7/ AN 7
e N 7
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7/ N 7
7 N 7
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N 3
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S() == B()

Figure 14: The interpolating relaxed B-spline curve

Derivation of the “1 4 17 equations. The first and last equations are different
from the middle ones. For all equations, recall that éBi,l + %Bi—l— %B,-H =5;.
For the middle equations, just multiply this relation by 6 to get
1Bz_1+4BZ+1Bz+1:651

For the first equation, By +4B; + By = 657; recall that By = Sy and subtract
Sp from both sides. The last equation is handled similarly, by using the fact
that B, = S,.
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Remark. As you see, we used B-splines to do interpolation. Usually when you
hear someone talk about a “B-spline” problem, though, the control points
B; will be given; when you hear someone talk about a “spline interpolation”
problem, the S; will be given and the person may or may not be thinking of
using B-splines to get the answer.

6. Higher dimensions and applications to animation.

Although we have been working in R?, everything that has been said so far
applies in any number of dimensions. In m dimensions, the control points B;
or the data points S; are in R™, and the values of P(t) are also in R™.

The case m = 3 is just what you would think: The control points or data
points give a curve in space.

Higher cases are useful in animation, as follows. Suppose that you have a
series of cartoon frames representing the position of some character at times
t =0,1,...,n, and from them you would like to compute more frames in
between to make a smooth-looking movie. In other words, you have some
key frames and you want to interpolate more frames.

The first step is to represent all frames in numerical form, by choosing some
uniform way of giving a list of numbers determining the position of the char-
acter. For example, suppose that the character is entirely made of straight
lines between various vertices, and there are fifteen such vertices. Then each
vertex can be described by two numbers, and the whole frame can be de-
scribed by a list of thirty numbers.

The next step is conceptual—simply think of a frame as being one point
in R*. Then your key frames are data points in R*’, and the in-between
frames will be on a curve in R*® that goes through the data points. To make
such a curve, just use an interpolating relaxed cubic spline P(t), following
the method of §5.

The final step is to find the in-between frames. Their lists of numbers are
found just by evaluating P(t) for the desired values of ¢, perhaps every %-th
of a time unit.

An example is shown in Figure 15, which was made by a former student in
this course. The rows of frames should be regarded as being in one long
sequence of frames. The key frames are indicated by an asterisk (*), and
each time unit has been divided into six subintervals. A final key frame was
used but is not shown.

Notes.

e It might be tempting to dispense with splines and just interpolate lin-
early between successive key frames. For example, at time t = %, just
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Figure 15: An example of animation, by Sean Meyn
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take % of each number from the key frame at t = 0 plus % of the corre-
sponding number from the key frame at ¢ = 1. However, this method
is the same as connecting data points in R*® with straight lines, and
the motion it produces will be very jerky.

e In animation, you must watch for cases where smooth second deriva-
tives are not applicable. For example, when a character steps on the
floor, there is a sudden stop of downward motion. Applying spline in-
terpolation will produce a picture in which the foot continues below
the floor!

7. A nonparametric version

The term “nonparametric” refers to the familiar situation y = f(x) or y =
f(t), as opposed to the parametric situation P(t) = (f1(¢), fa(t), .-, fm(t))-
A method for the non-parametric version gives a parametric method, and
vice-versa, as follows:

If you have a nonparametric method, just apply it separately in each coordi-
nate to obtain a parametric version. For example, if n = 2 and data points
(5,2),(3,7),(9,1) are given, find fi(z) such that f,(0) = 5, fi(1) = 3, and
fi(2) =9, and also fo(x) with values 2,7,1 at those same z-values. Then let
P(t) = fi(t), fo(t). (Notice that ¢ is now used in place of z.)

If you have a parametric method giving a curve P(t) in R™, to get a non-
parametric method just concentrate on the case m = 1. This would give you
a point moving in one dimension, i.e., a moving number z(¢) in R. How-
ever, you can think of the graph of x against ¢ to get a better picture of the
function. If you wish you can then put y for x and x for ¢ to get a function
y = f().

The discussion so far applies to any kind of parametric versus nonparametric
method, but it works in particular for uniform cubic B-splines and inter-
polating splines. In these cases, all functions involved are piecewise cubic.
The method of Section 5 applies for interpolation, with plain numbers wher-
ever points were mentioned. Instead of “Bézier curves” for the segments, we
have simply Bézier functions. Instead of data points, we have simply data
numbers.

8. Basis functions

Just to be specific, let’s consider splines with n = 4. Make a nonparamet-
ric interpolating spline function fy(¢) with data values 1,0,0,0, 0, using the
method of Section 5. Then make a similar function f;(¢) with data values
0,1,0,0,0. Continuing this way you get functions fy(t), ..., fi(t), as shown
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Figure 16: Basis functions for relaxed cubic splines, n=4

in Figure 16. In terms of linear algebra, these functions are a basis for the
vector space of all uniform relaxed cubic spline functions with n = 4.

These basis functions have a practical use even for spline curves in higher
dimensions with n = 4: Instead of computing interpolating splines directly,
as in Section 5, just compute these basis functions. Then, given data points
S0y« -+, 54, just let P(t) = fo(t)So + ... fa(t)Ss. This should be reminiscent
of the construction of Lagrange polynomials, and the reasoning to show that
they do interpolate the data points is the same as in the case of Lagrange.

This method is valuable when there is a reason to do as much pre-computing
as possible, so that there is nothing left to do with each new set of data points
except to take a linear combination at each time. Two occasions when there
is such a reason are these:

e You have many different curves to do with different data points but
always for n = 4.

e You need to interpolate in a space of high dimension, say for a compli-
cated cartoon. This method avoids carrying the data through all the
steps of row-reduction of the “1 4 17 matrix.

9. Other possible end conditions

Consider cubic spline curves that interpolate given data points. As we
shall discuss below, you can specify two additional vector conditions. Before,
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these conditions were that the second derivative be zero at each end. Instead,
we could make other requirements. One possibility would be to specify the
velocity vector at each end, i.e., to specify that P'(0) = v and to specify
that P'(n) = w for specific constant vectors v, w, instead of requiring that
the second derivative be zero at each end. These are called “clamped” end
conditions, because they force the curve to have a certain tangent direction
at each end, as if they were held with a clamp. Since the ends are twisted
by being clamped, we can no longer assume that the ends are relaxed.

Analysis of the clamped case.

We can no longer take By = Sy and B,, = 5,,, since these choices are what
result in having the second derivatives be 0 at each end. Therefore there are
n+ 1 points B; for which to solve. We need n + 1 equations involving points.
For n — 1 of them, we can just use

B;_1+4B;+ B;1 = 65, as before (but now for i = 1 and i = n— 1 as well).
For the first end condition, use the first derivative property of Bézier curves:
P'(0) = 3(P, — P,), which here is 3([2By + 5B1] — So) = 2By + B; — 3.
This quantity is to equal v. Therefore an equation is 2By + B; = 35 + v.
Similarly, at the other end an equation is B,,_; + 2B, = 35, — w. In matrix
form, the equations look like this (illustrated with n = 4):

210007 B (350 4 V)
14100||8B 65,
01410]|]|B|= 65,
00141]|]| By 655
00012]|]|B (35, — w)

The two extra conditions can be used other ways. If the first and last
data points are the same, the two conditions can be used to equate the
first derivatives of the two ends and also the second derivatives, so that a
“periodic spline curve” is obtained. Another possibility is to require the third
derivative to be continuous at S; and S, _;.

10. Non-uniform spline curves

The spline curves we previously studied were of the form P(t) for 0 <
t < n, where the points of gluing were t = 1,2,...,n — 1. We say that the
knot points are 0,1, ..., n. It is possible, more generally, to have knot points
tg,...,t,. As before, one can start with B-spline curves and then use them
for spline interpolation. In this case, the simple graphical construction with
A-frames is not possible, but there is a recursive construction that is not
difficult to implement on the computer.

DD 16



11. Problems

Problem DD-1. Sketch the relaxed cubic B-spline curve with control points
(0,0), (1,0), (1,1), (0,1), (0,0). (Calculate the Bézier control points, then
sketch the Bézier curves freehand. Use a large enough scale that your sketch
is meaningful.)

Problem DD-2. (a) In constructing a cubic B-spline curve from given con-
trol points By, ... , By, all the Bézier control points you generate are in the
convex hull of the set of B;. Why?

(b) Explain how it follows from (a) that the whole curve is in the convex hull
of the set of B;.

(c) If all the B; are on your rectangular screen, is the whole cubic B-spline
curve necessarily on the screen? (Why?)

Problem DD-3. (a) If you use B-spline control points By, ..., By to get
a B-spline curve P(t) with 0 < ¢ < n, which B; affect P(5.3)? (b) Which
affect P(6.0)?

Problem DD-4. (a) For the relaxed cubic spline through data points Sy, S,
Sa, find formulas for the B-spline and Bézier control points involved. (This is
the case n = 2, so you won’t need a matrix to solve equations. Your answers
will be linear combinations of the data points.)

(b) By Lagrange, there is actually a single quadratic polynomial through the
data points in (a). In general, will the two Bézier curves in (a) actually both
match this one quadratic curve? (Say why or why not.)

(c) Sketch the relaxed cubic spline curve through data points (1,0), (1,1),
(0,1).

(d) Show that P(3) = 535y + 225 — 3352 for the relaxed cubic spline curve
P(t) interpolating Sy, S1, Sa, where 0 < t < 2.

Problem DD-5. For the basis functions for relaxed cubic splines in the case
n = 2, find their values at t = % (You may use the results of Problem DD-4.)

Problem DD-6. Sketch the relaxed cubic spline through data points (0, 0),
(1,1), (2,0), (3,0). (Calculate the B-spline and Bézier control points, then
sketch the Bézier curves freehand. Use a large enough scale that your sketch

4 1] 4 -1
is meaningful. Useful information: [ 1 4 ] = [ 1 4 ])
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Problem DD-7. Sketch the relaxed cubic spline through data points (0, 0),
(1,0), (2,1), (3,0), (4,0). (Calculate the B-spline and Bézier control points,

then sketch the Bézier curves freehand. Use a large enough scale that your
-1

410 15 -4 1
sketch is meaningful.) Useful information: | 1 4 1 == | —4 16 —4
01 4 1 -4 15

Problem DD-8. Suppose two people are given control points By,... , B,
and an affine transformation 7" (the same B; and T for each person). The
first person finds the B-spline curve P(t) with control points B; (0 <t <n)
and then draws the curve T'(P(t)). The second person finds the points 7'(B;)
and uses them as control points to make a B-spline curve (also for 0 < ¢ < n).
Do the two people get the same curve? (Explain.)

Problem DD-9. Suppose three consecutive B-spline control points are evenly
spaced on a straight line. (a) Describe the A-frame of the middle control point
of the three. (b) What is the second derivative of the curve at the middle
control point?

Problem DD-10. For the Bézier curves making up a B-spline curve, each
Bézier curve depends on only several of the control points B;. Therefore
there is no harm in using an infinite list of control points. In fact, the list
could be ... ,B_l, B(), Bl, BQ, e

(a) Sketch the B-spline curve you get if the infinite list of B; keeps going
around the corners of a Box: By = (1,1), By = (—1,1), By = (—1,-1),
Bs = (1,—1), and By, = By, Bs = By, etc., and also B 1 = B3, B 5 = By,
etc. (Calculate the S; and the Bézier control points precisely and sketch the
Bézier curves freehand.)

(b) Is the curve you get an exact circle? How do you know?

Problem DD-11. (a) Suppose two cubic polynomials p(t) and ¢(t) have
equal values at t = ¢y, equal first derivatives, equal second derivatives, and
equal third derivatives. Then they must be the same polynomial. Why?
(Quote Taylor’s Theorem.) (b) State a similar fact about cubic parametric
curves, and say why it follows from (a). (c) In trying to glue cubic Bézier
curves to make a single B-spline curve, we matched first and second deriva-
tives, but not the third. Why not?

Problem DD-12. (a) Find a matrix M so that the Bézier curve with control
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50
P
Py
Ps

(Method: Each column of M tells the expansion of a Bernstein polynomial
in powers of t.)

points P, ..., P; can be written as P(t)=[ 1 t ¢* | M

(b) Suppose you have B-spline control points By, ... , B,. Find a matrix H
so that the Bézier control points of Bézier curve #1i can be written as

&0 B,
P B; 4
P H B;

Ps By

(See the explanation of the computer method in Section 4.)

(c) Explain how to use (a) and (b) to get a matrix expression for the point
on Bézier curve #i corresponding to a given ¢ (with 0 < ¢ < 1), in terms of
the Bz

Problem DD-13. Sketch the clamped cubic spline curve P(t) through (0, 0),
(1,1), (2,2) with P'(0) = (1,0) and P'(2) = (1,0).

(Method: Calculate B-spline and Bézier control points and then sketch the
Bézier curves freehand.) Useful information:
1

2 107 7 -2 1
141 Ll -2 4 -2
01 2 1 -2 7

Problem DD-14. Sketch one cartoon frame with a simple character and
some coordinate axes. Give a list of numbers that describes the cartoon.
Say what each number represents, for example, the z and y coordinates of a
specific point. Give enough information that if the numbers were changed,
someone else could draw the new position of the character.

Problem DD-15. The leg and foot of a cartoon character are shown in
keyframes at times ¢ = 0,1, 2, in Figure 17. Sketch the interpolated frame
for t = .5, using relaxed cubic spline interpolation. (Calculate the position
of the heel precisely; for this you may use the result of Problem DD-4 for the
case n = 2 at time % You may use intuition for the other two points of the
character.)

Problem DD-16. Suppose that you were to compute a large number of
frames based on the keyframes in Figure 17, for 0 < ¢t < 2. In what way
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Figure 17: Cartoon frames at times 0, 1, 2

would the motion look better than if you had simply interpolated linearly
between the first two key frames and then interpolated linearly between the
second and third?

Problem DD-17. Sketch the nonparametric uniform relaxed cubic spline
function with data values 0,1,0,—1,0. (Method: This is the case n = 4. Use
the method of Section 8 and the basis functions from Figure 16.)

Problem DD-18. For two Bézier curves P(t) and Q(t), with respective lists
of control points P, ..., Py and @, - . ., @3, linearly interpolating between the
curves is the same as linearly interpolating between the control points. For
example, if R; is the point one-third of the way from P; to @); for each ¢, then
the Bézier curve R(t) with control points Ry, ..., R3 is one-third of the way
from P(t) to Q(t), in the sense that for each ¢, the point R(¢) is one-third of
the way from the point P(t) to the point Q(t).

(a) Prove the statement in this last sentence. (Let Ry = 2Py + 3Qo, etc.)

(b) Sketch the Bézier curve that is one-third of the way from the Bézier curve
with control points (0, 0), (6,0), (6,6), (0,6) to the Bézier curve with control
points (0, 0), (6,0), (6,6), (12,6).

Problem DD-19. It would be possible to use Lagrange interpolation for
animation, but would the results be very good? To see what might happen,
imagine a cartoon character walking along between times ¢ = 0 and ¢ = 10.
She is walking at constant speed to the right, and is walking on one level
until time ¢ = 7, when she goes up one step and then walks at the new level
for the rest of the time. What motion would Lagrange interpolation give?
(Consult Figure 1.)
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Problem DD-20. For the B-spline curve B(t) with control points By, .. ., By,
show that fort=1,...,n— 1,

(a) B'(i) = half the vector from B;_; to B;,1,

(b) B"(i) = twice the vector from B to the midpoint of the segment from
B;_ to B;;.

Remark. These facts make it easy to look at the control polygon for a B-
spline and see where the first and second derivatives will be larger and where
they will be smaller. Although these facts apply only at the points B(i) = S;
in the case of the second derivative it is easy to tell what happens between:
Since that B(t) itself is piecewise cubic, B'(t) is piecewise quadratic, and
B’ (t) is piecewise linear, so the second derivative changes linearly from each
point S; to the next, the points where you do know the second derivative—
and this includes the ends, since the second derivative there is 0.
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