
Inkscape and Python

Alex Valavanis

Institute of Microwaves and Photonics,
University of Leeds

July 11, 2014

Overview

Inkscape: an intro to the project

How I got involved

Inkscape development

My involvement

Extension subsystem

What is Inkscape?

I Scalable Vector Graphics (SVG)
editor

I Forked from Sodipodi in
2003. . . which was forked from
Gill in 1999

I Used by graphic designers,
artists, scientists, engineers. . .

Multi-path editing.

Gaussian blur.

A peek at a few more features. . .

Tweak tool

Spiro typography

Text editing

Caligraphy and engraving

Why the fork from Sodipodi?

Inkscape aims to do a few things fundamentally differently from its
predecessor:

I Full SVG standards
compliance

I Open developer access

I Contribute to 3rd-party
libraries rather than DIY
solutions

I Simpler GUI

I C++/GtkMM

Sodipodi 0.34 (2004)

Inkscape for scientific illustrations

First encountered Inkscape while looking for a nice illustration
package

I Same vector image for
posters, presentations and
papers

I Free software

I Debian package available

I Fairly simple GUI

I LATEX support

I EPS/PDF/bitmap
support

Debian/Ubuntu packaging

I Upstream work-in-progress (v0.48.4)
I Lots of bugs still exist!!

I 3610 upstream bugs
I 93 Debian package bugs
I 130 Ubuntu package bugs

I Slow Debian maintenance created a
bottleneck

I I started Ubuntu bug triage,
forwarding patches etc. . .

Deeper into the rabbit hole

I Grew tired of waiting for Debian
package upgrades

I . . . Started working on Ubuntu
package (2010)

I Upstream developer since May 2011

I Started off reviewing/applying patches
from Ubuntu/Debian

I Pretty active over last 12 months

Project organisation

I 69 developers
I 7 board members
I 11 active developers (≥ 10 commits

in last year)

I Representation in W3C SVG working
group

I Software Freedom Conservancy
membership

Development policy

I Bazaar version control

I Launchpad for code, bugs, blueprints
& answers but not translations

I Very open trunk access: 2-patch rule

I “patch first, discuss later”

I Not using time-based releases (yet!)

I Nightly & stable build PPAs provided

Architecture

A fairly outdated architecture diagram. . .

Architectural changes

Since the architecture diagram was made. . .

I Extensions subsystem

I Cairo graphics instead of custom
renderer

I Pango for (some) text layout

I 2Geom library for geometry

I Dockable dialogs (GDL)

I C++/GtkMM migration

Gtk+ 3 migration

I Sodipodi GUI written with Gtk+ 1.x. No serious migration
effort since then!

I Major API changes in Gtk+ 3.x:
I Cairo rendering
I Object heirarchy changed
I Signalling changes

I Hundreds of changes needed in Inkscape

I Not just find-and-replace!

I 675 conditional build blocks!

Conclusion: Stay on top of library deprecations!

Gnome Docking Library (GDL)

I Gtk+ dockable dialog widget-set
I Fork copied into Inkscape trunk

long ago
I A couple of minor patches

applied in fork
I Major architectural changes

upstream (Gtk+ 3)
I Forked code Gtk+ 3

incompatible!

I I spent a long time untangling
diffs, forwarding patches

I Conclusion: Don’t adopt
libraries unless you really have
to!

Other work

Activity mostly involves build-testing and cleaning
I Launchpad PPAs

I Nightly and stable builds
I Inkscape 0.49 preview/testing for users
I Early-warning system for build failures

I Deprecation testing/hardening

I cppcheck

Extension subsystem

Inkscape extensions can provide various forms of functionality:

I Input: Translate an input file format into an SVG document

I Output: Translate an SVG document into an output file
format

I Effect: Manipulate an SVG document

Extensions can be implemented in a number of ways, including:

I Internal: C/C++ files that link directly into Inkscape

I External Scripts: Send SVG data via STDIN/STDOUT

Example extensions

Extension scripts

Inkscape runs extension scripts using the following syntax

1 (i n t e r p r e t e r) ? y o u r s c r i p t (−−param=va l u e) ∗ / path / to /
i npu t [[/ SVGf i l e]] | i n k s c ap e

Note that:

I Any interpreter can be used (including Python!)

I Any number of parameters can be passed to the script

I Data is received by the script through STDIN

I Data is sent back to Inkscape through STDOUT

Extension descriptor file

I Specify parameters (to generate a GUI dialog)

I Define a menu entry in Inkscape

Extension descriptor file

I Define the script file and dependencies

1 <i nk s cape−e x t e n s i o n>
2 < name>He l l o World !</ name>
3 < i d>org . e k i p s . f i l t e r . h e l l o w o r l d</ i d>
4 <dependency type=” e x e c u t a b l e ” l o c a t i o n=” e x t e n s i o n s ”>

h e l l o w o r l d . py</ dependency>
5 <dependency type=” e x e c u t a b l e ” l o c a t i o n=” e x t e n s i o n s ”>

i n k e x . py</ dependency>

I “hello world.py” is our effect script

I “inkex.py” provides an Effect base class

I Only loads if dependencies are met

Extension descriptor file

An XML file “hello world.inx” that provides a description of the
extension script:

I Define parameters needed by the script

1 <param name=”what” type=” s t r i n g ” gu i−t e x t=”What
would you l i k e to g r e e t ?”>World</param>

I Inkscape creates input widgets in an effect dialog

Extension descriptor file

Much fancier dialogs can be generated using param elements

I Notebooks and pages

I Enumerations (drop-down
lists)

I Option groups (radio
buttons)

I Strings (text boxes)

I Numerics (spin-button)

I Colours (colour selector)

Extension descriptor file

I Define type of extension and menu location

1 <e f f e c t>
2 <ob j e c t−t ype> a l l</ ob j e c t−t ype>
3 <e f f e c t s −menu>
4 <submenu name=”Examples ”/>
5 </ e f f e c t s −menu>
6 </ e f f e c t>

Extension descriptor file

I Define script command, location and interpreter

1 < s c r i p t>
2 <command r e l d i r=” e x t e n s i o n s ” i n t e r p r e t e r=”python ”>

h e l l o w o r l d . py</command>
3 </ s c r i p t>
4 </ ink scape−e x t e n s i o n>

I Python is most popular language for bundled extensions

I A couple of contributions in Perl and Ruby

Extension script

I inkex provides an effect base class and XML handling (lxml)

I simplestyle provides CSS style-handling

1 #!/ u s r / b i n / env python
2

3 impor t s y s
4 s y s . path . append (’ / u s r / sha r e / i n k s c ap e / e x t e n s i o n s ’)
5

6 impor t i n k e x
7 from s i m p l e s t y l e impor t ∗

Extension script

I Extend the Effect base class

I Handle the options passed from Inkscape

1 c l a s s He l l oWo r l dE f f e c t (i n k e x . E f f e c t) :
2 de f i n i t (s e l f) :
3 i n k e x . E f f e c t . i n i t (s e l f)
4 s e l f . Opt i onPa r s e r . add op t i on (’−w ’ , ’−−what ’ ,
5 a c t i o n = ’ s t o r e ’ , t ype = ’ s t r i n g ’ ,
6 de s t = ’ what ’ , d e f a u l t = ’World ’ ,
7 he l p = ’What would you l i k e to g r e e t ? ’)

Extension script

I Override the effect method to modify SVG file as needed

1 de f e f f e c t (s e l f) :
2 # Use op t i o n s as r e q u i r e d
3 what = s e l f . o p t i o n s . what
4

5 # Get a c c e s s to main SVG document e l ement and get
i t s d imens i on s .

6 svg = s e l f . document . g e t r o o t ()
7 width = ink e x . un i t t o uu (svg . ge t (’ w idth ’))
8 h e i g h t = i nk e x . un i t t ouu (svg . ge t (’ h e i g h t ’))

Extension script

I Override the effect method to modify SVG file as needed

1 # Create a new l a y e r
2 l a y e r = i nk e x . e t r e e . SubElement (svg , ’ g ’)
3 l a y e r . s e t (i n k e x . addNS(’ l a b e l ’ , ’ i n k s c ap e ’) , ’ H e l l o

%s Layer ’ % (what))
4 l a y e r . s e t (i n k e x . addNS(’ groupmode ’ , ’ i n k s c ap e ’) , ’

l a y e r ’)
5

6 # Create t e x t e l ement
7 t e x t = i nk e x . e t r e e . Element (i n k e x . addNS(’ t e x t ’ , ’ svg ’

))
8 t e x t . t e x t = ’ He l l o %s ! ’ % (what)

Extension script

I Override the effect method to modify SVG file as needed

1 # Set t e x t p o s i t i o n to c e n t e r o f document .
2 t e x t . s e t (’ x ’ , s t r (width / 2))
3 t e x t . s e t (’ y ’ , s t r (h e i g h t / 2))
4

5 # Cente r t e x t h o r i z o n t a l l y w i th CSS s t y l e .
6 s t y l e = { ’ t e x t−a l i g n ’ : ’ c e n t e r ’ , ’ t e x t−anchor ’ : ’

m idd le ’ }
7 t e x t . s e t (’ s t y l e ’ , f o rma tS t y l e (s t y l e))
8

9 # Connect e l ement s t o g e t h e r .
10 l a y e r . append (t e x t)

Extension script

I Finally, instantiate effect class and apply it!

1 e f f e c t = He l l oWo r l dE f f e c t ()
2 e f f e c t . a f f e c t ()

New SVG elements

I Inkscape receives modified SVG file from script

I Inkscape redraws the file

1 <g
2 i d=”g905”
3 i n k s c ap e : groupmode=” l a y e r ”
4 i n k s c ap e : l a b e l=” He l l o World Laye r ”>
5 <t e x t
6 i d=” t ex t907 ”
7 s t y l e=” tex t−anchor : m idd l e ; t e x t−a l i g n : c e n t e r ”
8 y=” 526.18110235 ”
9 x=”372.047244095 ”>He l l o World !</ tex t>

10 </g>

Future directions

I Complete SVG 1.1 compliance

I Migrate to C++/GtkMM

I Replace custom text rendering with Pango

I Improve testing

I Python bindings for 2Geom library

Reflections

A few thoughts after 18 months with Inkscape:

I Open development: Good for new features, bad for
consistency?

I Forks of forks: Is a messy codebase inevitable?

I “Hands-off” management: Contributors work well on pet
projects. Slow progress on major project goals.

I Language migration: Is it worth it? Weird hybrid
GObject/C++ code can be confusing! Unclear class
heirarchies.

I Testing: Not enough of it! Integration with Debian build
system?

Conclusions

I Inkscape provides a very welcoming development environment

I Code-base in need of a little spring cleaning!

I . . . but light is at the end of the tunnel

I Extensions subsystem is flexible and simple to use. Lots of fun
for keen Python developers (hint!)

Acknowledgements

I Inkscape developers

I Peter Russell, WyPy

I Jonny Cooper, Inst. Microwaves and Photonics

	Inkscape: an intro to the project
	How I got involved
	Inkscape development
	My involvement
	Extension subsystem

