Inkscape and Python

Alex Valavanis

Institute of Microwaves and Photonics,
University of Leeds

July 11, 2014

Overview

Inkscape: an intro to the project

How | got involved

Inkscape development

My involvement

Extension subsystem

What is Inkscape?

» Scalable Vector Graphics (SVG)
editor

» Forked from Sodipodi in Multi-path editing.
2003. . . which was forked from
Gill in 1999

» Used by graphic designers,
artists, scientists, engineers. ..

Gaussian blur.

A peek at a few more features. . .

[m]

Caligraphy and engraving

=

Why the fork from Sodipodi?

Inkscape aims to do a few things fundamentally differently from its

predecessor:
-
= —=F
D‘Elélé xiw
» Full SVG standards L2 N Y R o W G A
compliance =

» Open developer access

» Contribute to 3rd-party
libraries rather than DIY

solutions 0

. il o

> Slmpler GUI (j)% Farmm 712, [55% [
£|E]v|
» C++/GtkMM [zl

Sodipodi 0.34 (2004)

Inkscape for scientific illustrations

First encountered Inkscape while looking for a nice illustration
package

>

Same vector image for
posters, presentations and
papers

Free software

Debian package available
Fairly simple GUI

IATEX support

EPS/PDF /bitmap
support

7 "Bumps" have
height A,

Debian/Ubuntu packaging

v

Upstream work-in-progress (v0.48.4)

v

Lots of bugs still exist!!

» 3610 upstream bugs N
» 93 Debian package bugs
» 130 Ubuntu package bugs

Slow Debian maintenance created a

v

bottleneck

| started Ubuntu bug triage,
forwarding patches etc. ..

v

Deeper into the rabbit hole

> Grew tired of waiting for Debian
package upgrades

» ... Started working on Ubuntu
package (2010)

> Upstream developer since May 2011

» Started off reviewing/applying patches
from Ubuntu/Debian

> Pretty active over last 12 months

Project organisation

> 69 developers

» 7 board members
» 11 active developers (> 10 commits
in last year)

» Representation in W3C SVG working
group

» Software Freedom Conservancy
membership

Development policy

» Bazaar version control

» Launchpad for code, bugs, blueprints
& answers but not translations

» Very open trunk access: 2-patch rule
» “patch first, discuss later”

» Not using time-based releases (yet!)
> Nightly & stable build PPAs provided

Architecture

A fairly outdated architecture diagram. ..

Cruft subsystem - (src/svg/)

il which doesn't have 2 better

Architectural changes

Since the architecture diagram was made. . .

.
> Extensions subsystem cailro
» Cairo graphics instead of custom
renderer =5
» Pango for (some) text layout Hav a |

» 2Geom library for geometry
» Dockable dialogs (GDL)

> C++/GtkMM migration 2deom

geometry framework

Gtk+ 3 migration

v

Sodipodi GUI written with Gtk+ 1.x. No serious migration
effort since then!
Major API changes in Gtk+ 3.x:

» Cairo rendering
» Object heirarchy changed
» Signalling changes

v

v

Hundreds of changes needed in Inkscape

v

Not just find-and-replace!
675 conditional build blocks!

v

Conclusion: Stay on top of library deprecations!

Gnome Docking Library (GDL)

» Gtk+ dockable dialog widget-set
» Fork copied into Inkscape trunk
long ago
» A couple of minor patches
applied in fork
» Major architectural changes
upstream (Gtk+ 3)
» Forked code Gtk+ 3
incompatible!
> | spent a long time untangling
diffs, forwarding patches

» Conclusion: Don't adopt
libraries unless you really have
to!

F¥9.1 (1) DAFill and stroke (ShiftsCtrl+F)

Fill | stroke pai

No objects

Relative to:| Drawing

Treat selection as group:

FEEIFS

o],] o ol] 0 02—

Distribute

it 63h (7 {1} By
EFEEm
Rearrange

O Ry G Bu o =g
Remove overlaps
w:foo |2v:[oo zI fll

Nodes

e LU

—

Other work

Activity mostly involves build-testing and cleaning
» Launchpad PPAs

» Nightly and stable builds
» Inkscape 0.49 preview /testing for users
» Early-warning system for build failures

» Deprecation testing/hardening

» cppcheck

Extension subsystem

Inkscape extensions can provide various forms of functionality:
> Input: Translate an input file format into an SVG document

» Output: Translate an SVG document into an output file
format

» Effect: Manipulate an SVG document

Extensions can be implemented in a number of ways, including:
» Internal: C/C++ files that link directly into Inkscape
» External Scripts: Send SVG data via STDIN/STDOUT

Example extensions

LaTeXinput: |\(\displaystyle\frac{\pi*2{6}=\lim_{n\to \inftyP\sum_{k=1}*n\frac{1Hk~2}\}
| Additional packages (comma-separated):

[Live preview

Close

Apply

Magnitude: | 100.0

Angle:

45.0

Live preview

Close

Apply

QR Code
See http://www.denso-wave.com/qrcode/
index-e.html for details

Text: [www.inkscape.org

Size, in unit squares: | Auto B

With "Auto”, the size of the barcode depends on
the length of the text and the error correction level
Error correction level: | L (Approx. 7%) .

Character encoding: | Latin 1 &
square size (px): a0 =

@ Live preview

close Apply.

n—oo

Extension scripts

Inkscape runs extension scripts using the following syntax

-

(interpreter)? your_script (——param=value)x /path/to/
input [[/SVGfile]] | inkscape

Note that:
» Any interpreter can be used (including Python!)
» Any number of parameters can be passed to the script
» Data is received by the script through STDIN
» Data is sent back to Inkscape through STDOUT

Extension descriptor file

» Specify parameters (to generate a GUI dialog)

» Define a menu entry in Inkscape

Extension descriptor file

o1

» Define the script file and dependencies

<inkscape—extension>
<_name>Hello World!</_name>

<id>org.ekips.filter.hello_world</id>

<dependency type="executable

location="extensions”">

hello_world . py</dependency>

<dependency type="executable
inkex .py</dependency>

location="extensions”">

> “hello_world.py” is our effect script

> “inkex.py” provides an Effect base class

» Only loads if dependencies are met

Extension descriptor file

An XML file “hello_world.inx” that provides a description of the
extension script:

» Define parameters needed by the script

1 <param name="what" type="string” _gui—text="What
would you like to greet?”">World</param>

> Inkscape creates input widgets in an effect dialog

x) Hello World!
what would you like to greet? |world|
| Live preview

Close Apply

Extension descriptor file

Much fancier dialogs can be generated using param elements

» Notebooks and pages)
Graffiti | Orientation | Options | Preferences | Help

» Enumerations (drop-down

|IStS) Orientation type: 2-points mode
@ |(move and rotate,

. . intained ratio X/Y)
» Option groups (radio Tpoinzmode
O (move, rotate and mirror,
buttons) different X/Y scale)
*) graffiti points
> H | O in-out reference point
Strings (text boxes) o f—
» Numerics (spin-button) sl 100000

Units (mm or in): | mm

» Colours (colour selector)

Extension descriptor file

o A W N =

> Define type of extension and menu location

<effect>
<object—type>all</object—type>
<effects —menu>
<submenu _name="Examples” />
</effects —menu>
</effect>

* (@ hello

Hello world...

Extension descriptor file

> Define script command, location and interpreter

-

<script>
<command reldir="extensions” interpreter="python">
hello_world . py</command>
</script>
</inkscape—extension>

N

B~ W

» Python is most popular language for bundled extensions

» A couple of contributions in Perl and Ruby

Extension script

» inkex provides an effect base class and XML handling (Ixml)

» simplestyle provides CSS style-handling

#!/usr/bin/env python

import sys
sys.path.append('/usr/share/inkscape/extensions ')

import inkex
from simplestyle import =

~N o A W N e

Extension script

» Extend the Effect base class

» Handle the options passed from Inkscape

il class HelloWorldEffect(inkex.Effect):

2 def __init__(self):

3 inkex.Effect. __init__(self)

4 self.OptionParser.add_option(’'—w’', '—what’,
5 action = 'store', type = ’'string ',

6 dest = 'what', default = "World ",

7 help = 'What would you like to greet?')

Extension script

A W N e

» Override the effect method to modify SVG file as needed

def effect(self):

Use options as required
what = self.options.what

Get access to main SVG document element and get
its dimensions.

svg = self.document. getroot ()

width = inkex.unittouu(svg.get(width'))

height = inkex.unittouu(svg.get(height'))

Extension script

» Override the effect method to modify SVG file as needed

1 # Create a new layer

2 layer = inkex.etree.SubElement(svg, 'g’)

3 layer.set(inkex.addNS(' 'label’, "inkscape'), 'Hello
%s Layer' % (what))

4 layer.set(inkex.addNS(' 'groupmode’, 'inkscape'),
layer ')

5

6 # Create text element

7 text = inkex.etree.Element(inkex.addNS('text', 'svg'’
))

8 text.text = "Hello %s!’ % (what)

Extension script

o B W N =

10

» Override the effect method to modify SVG file as needed

Set text position to center of document.
text.set('x’', str(width / 2))
text.set('y', str(height / 2))

Center text horizontally with CSS style.

style = {'text—align' : ’'center’
middle "}

text.set('style’, formatStyle(style))

, 'text—anchor :

Connect elements together.
layer.append(text)

Extension script

» Finally, instantiate effect class and apply it!

effect = HelloWorldEffect ()
effect.affect ()

N

T DRI e TN v SR v SRR v SRR . —
j |5 1) [=3Layers (Shift+Ctrl+L) ® ® -,

I§ .u' - & | J|
— @ @ Helloworld Layer —
o 5; W@ @ Layer1 “j *,

3]
& = Hello World!
Q : =

s__' . Hello World!
Y5 &
D E what would you like to greet? world =
@ ?i | Live preview &Y,

E S 1 Close Apply > b

1

New SVG elements

© O N O U A W N

=
o

> Inkscape receives modified SVG file from script

> Inkscape redraws the file

<g

id="g905"

inkscape:groupmode="layer”

inkscape:label="Hello World Layer">

<text
id="text907"
style="text—anchor: middle; text—align:center”
y="526.18110235"
x="372.047244095">Hello World!</text>

</g>

Future directions

v

Complete SVG 1.1 compliance
Migrate to C+-+/GtkMM

Replace custom text rendering with Pango

v

v

> Improve testing

v

Python bindings for 2Geom library

Reflections

A few thoughts after 18 months with Inkscape:

>

Open development: Good for new features, bad for
consistency?

Forks of forks: Is a messy codebase inevitable?

“Hands-off” management: Contributors work well on pet
projects. Slow progress on major project goals.

Language migration: Is it worth it? Weird hybrid
GObject/C++ code can be confusing! Unclear class
heirarchies.

Testing: Not enough of it! Integration with Debian build
system?

Conclusions

» Inkscape provides a very welcoming development environment
» Code-base in need of a little spring cleaning!

> ...but light is at the end of the tunnel

» Extensions subsystem is flexible and simple to use. Lots of fun

for keen Python developers (hint!)

Acknowledgements

> Inkscape developers
» Peter Russell, WyPy

» Jonny Cooper, Inst. Microwaves and Photonics

	Inkscape: an intro to the project
	How I got involved
	Inkscape development
	My involvement
	Extension subsystem

